After studying this chapter, you will be able to:

- **Calculate** advanced variances
- **Interpret** Variances
- **Identify and Explain** the relationship of the Variances
- **Apply** Standard Costing Methods including the Reconciliation of Budgeted and Actual Profit Margins
- **Explain** the wider issues involved in changing mix e.g. Cost, Quality, and Performance Measurement issues
- **Analyse and Evaluate** Past Performance using the results of variance analysis
- **Use** Variance Analysis to assess how Future Performance of an organisation can be improved
12.2 STRATEGIC COST MANAGEMENT AND PERFORMANCE EVALUATION

CHAPTER OVERVIEW

ANALYSIS OF ADVANCED VARIANCES

Variance analysis is examinable both at Intermediate Level (Cost and Management Accounting) and at Final Level (Strategic Cost Management and Performance Evaluation). One main difference in syllabus between the two papers is that the Final Level syllabus includes analysis of advanced variances, as follows:

- Planning and Operational Variances
- Variance Analysis in Activity Based Costing
- Learning Curve Impact on Variances
- Relevant Cost Approach to Variance Analysis
- Variance Analysis and Throughput Accounting
- Variance Analysis in Advanced Manufacturing Environment
- Variance Analysis in Service Industry
- Variance Analysis in Public Sector

Planning & Operational Variances

When the current environmental conditions are different from the anticipated environmental conditions (prevailing at the time of setting standard or plans) the use of routine analysis of variance for measuring managerial performance is not desirable / suitable. The variance analysis can be useful for measuring managerial performance if the variances computed are determined on the basis of revised targets / standards based on current actual environmental conditions.
In order to deal with the above situation i.e. to measure managerial performance with reference to material, labour and sales variances, it is necessary to compute the Planning and Operational Variances.

A Planning Variance simply compares a revised standard to the original standard.

An Operational Variance simply compares the actual results against the revised amount.

Operating Variances would be calculated after the planning variances have been established and are thus a realistic way of assessing performance.

Planning Variance

Classification of variances caused by ex-ante budget allowances being changed to an ex post basis. Also, known as a revision variance.

Operational Variance

Classification of variances in which non-standard performance is defined as being that which differs from an ex post standard. Operational variances can relate to any element of the standard product specification.

Standard ex ante

Before the event. An ex ante budget or standard is set before a period of activity commences.

Standard, ex post

After the event. An ex post budget, or standard, is set after the end of a period of activity, when it can represent the optimum achievable level of performance in the conditions which were experienced. Thus, the budget can be flexed, and standards can reflect factors such as unanticipated changes in technology and in price levels. This approach may be used in conjunction with sophisticated cost and revenue modelling to determine how far both the plan and the achieved results differed from the performance that would have been expected in the circumstances which were experienced.
Example

In the case of Material Purchase Price Variance, suppose the Standard Price of Raw Material determined was ₹5.00 per unit, the General Market Price per unit at the time of purchase was ₹5.20 and Actual Price paid per unit was ₹5.18 on the purchase of say 10,000 units of Raw Material.

In this case the variances to be computed should be:

Material Purchase Price Variance

Planning Variance*:

\[
\text{Planning Variance} = (\text{Standard Price p.u.} - \text{General Market Price p.u.}) \times \text{Actual Quantity Purchased}
\]

\[
= (₹5.00 - ₹5.20) \times 10,000 \text{ units}
\]

\[
= ₹2,000 (A)
\]

* uncontrollable

Operational Variance:

\[
\text{Operational Variance} = (\text{General Market Price p.u.} - \text{Actual Price Paid p.u.}) \times \text{Actual Quantity Purchased}
\]

\[
= (₹5.20 - ₹5.18) \times 10,000 \text{ units}
\]

\[
= ₹200 (F)
\]

In the case of Material Usage Variance, suppose the Standard Quantity per unit be 5 Kgs., Actual Production units be 250 and Actual Quantity of Material used is 1,450 kgs. Standard Cost of Material per Kg. was ₹1. Because of shortage of Skilled Labour it was felt necessary to use Unskilled Labour and that increased Material Usage by 20%. The variances to be computed to deal with the current environmental conditions will be:

Material Usage Variance

Planning Variance*:

\[
\text{Planning Variance} = (\text{Original Std. Quantity in Kgs.} - \text{Revised Std. Quantity in Kgs.}) \times \text{Standard Price per Kg.}
\]

\[
= (1,250 \text{ Kgs.} - 1,500 \text{ Kgs}) \times ₹1
\]

\[
= ₹250 (A)
\]

* uncontrollable

Operational Variance (Controllable):

\[
\text{Operational Variance} = (\text{Revised Standard Quantity in Kgs.} - \text{Actual Quantity Used in Kgs.}) \times \text{Std. Price per Kg.}
\]

\[
= (1,500 \text{ Kgs.} - 1,450 \text{ Kgs.}) \times ₹1
\]

\[
= ₹50 (F)
\]
Like Material Variances, here also Labour Efficiency and Wage Rate Variances should also be adjusted to reflect changes in environmental conditions that prevailed during the period.

The conventional Sales Volume Variance reports the difference between actual and budgeted sales valued at the standard price per unit. The variance just indicates whether sales volume is greater or less than expected. It does not indicate how well sales management has performed. In order to assess the performance of sales management, market conditions prevailing during the period should be taken into consideration.

Accordingly, the sales volume variance can be sub-divided into a planning variance (market size variance) and operational variance (market share variance).

A Planning Variance simply compares a revised standard to the original standard. An Operational Variance simply compares the actual results against the revised amount. Controllable Variances are those variances which arises due to inefficiency of a cost centre /department. Uncontrollable Variances are those variances which arises due to factors beyond the control of the management or concerned department of the organization.

Variance Analysis in Activity Based Costing

Variance analysis can be applied to activity costs (such as setup costs, product testing, quality testing etc.) to gain understanding into why actual activity costs vary from activity costs in the static budget or in the flexible budget. Interpreting cost variances for different activities requires understanding whether the costs are output unit-level, batch level, product sustaining, or facility sustaining costs.

We use the similar track to variance analysis for activity-based costing as for traditional costing. The price variance is the difference between standard price and actual price for the actual quantity of input used for each cost driver. The efficiency variance measures the difference between the actual amount of cost driver units used, and the standard allowed to make the output. We multiply the difference in quantities by the standard price per cost driver to get the rupee value of the variance.

ABC approach is based on the assumption that the overheads are basically variable (but variable with the delivery numbers and not the units output). The efficiency variance reports the cost impact of undertaking more or less activities than standard, and the expenditure variance reports cost impact of paying more or less than standard for the actual activities undertaken.

Illustration

N & S Co. (NSC) is a multiple product manufacturer. NSC produces the unit and all overheads are associated with the delivery of units to its customers.
12.6 STRATEGIC COST MANAGEMENT AND PERFORMANCE EVALUATION

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Budget</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheads (₹)</td>
<td>4,000</td>
<td>3,900</td>
</tr>
<tr>
<td>Output (units)</td>
<td>2,000</td>
<td>2,100</td>
</tr>
<tr>
<td>Customer Deliveries (no.’s)</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

Required

CALCULATE Efficiency Variance and Expenditure Variance by adopting ABC approach.

Solution

Computation of Variances

Efficiency Variance

\[
\text{Efficiency Variance} = \text{Cost Impact of undertaking activities more/ less than standard}
\]

\[
= (21 \text{ deliveries}^* - 19 \text{ deliveries}) \times ₹200
\]

\[
= ₹400 \text{ F}
\]

\[
^* \left(\frac{20 \text{ Deliveries}}{2,000 \text{ units.}} \right) \times 2,100 \text{ units}
\]

Expenditure Variance

\[
\text{Expenditure Variance} = \text{Cost impact of paying more/ less than standard for actual activities undertaken}
\]

\[
= 19 \text{ deliveries} \times ₹200 - ₹3,900
\]

\[
= ₹100 \text{ (A)}
\]

Learning Curve- Impact on Variances

Learning curve is a geometrical progression, which reveals that there is steadily decreasing cost for the accomplishment of a given repetitive operation, as the identical operation is increasingly repeated. The amount of decrease will be less and less with each successive unit produced. As more units are produced, people involved in production become more efficient than before. Each additional unit takes less time to produce. The amount of improvement or experience gained is reflected in a decrease in man-hours or cost. Where learning takes place with a regular pattern it is important to take account of reduction in a labour hours and cost per unit. Automated manufacturing is unlikely to have much variation or to display a regular learning curve. In less-automated processes, however, where learning curves do occur, *it is important to take the resulting decline in labour hours and costs into account in setting standards, determining prices, planning production, or setting up work schedules*. With the help of the learning curve theory the standard time of any batch or unit can be computed then compare the actual data with the standard and compute the variances.
Illustration

City International Co. is a multiproduct firm and operates standard costing and budgetary control system. During the month of June firm launched a new product. An extract from performance report prepared by Sr. Accountant is as follows:

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Budget</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>30 units</td>
<td>25 units</td>
</tr>
<tr>
<td>Direct Labour Hours</td>
<td>180.74 hrs.</td>
<td>118.08 hrs.</td>
</tr>
<tr>
<td>Direct Labour Cost</td>
<td>₹1,19,288</td>
<td>₹ 79,704</td>
</tr>
</tbody>
</table>

Sr. Accountant prepared performance report for new product on certain assumptions but later on he realized that this new product has similarities with other existing product of the company. Accordingly, the rate of learning should be 80% and that the learning would cease after 15 units. Other budget assumptions for the new product remain valid.

The original budget figures are based on the assumption that the labour has learning rate of 90% and learning will cease after 20 units, and thereafter the time per unit will be the same as the time of the final unit during the learning period, i.e. the 20th unit. The time taken for 1st unit is 10 hours.

Required

Show the variances that reconcile the actual labour figures with revised budgeted figures in as much detail as possible.

Note:

The learning index values for a 90% and a 80% learning curve are −0.152 and −0.322 respectively.

\[\log 2 = 0.3010, \log 3 = 0.47712, \log 5 = 0.69897, \log 7 = 0.8451, \text{antilog of 0.6213} = 4.181, \text{antilog of 0.63096} = 4.275 \]

Solution

Working Note

The usual learning curve model is

\[y = ax^b \]

Where

- \(y \) = Average time per unit for \(x \) units
- \(a \) = Time required for first unit
- \(x \) = Cumulative number of units produced
- \(b \) = Learning coefficient
W.N.1
Time required for first 15 units based on revised learning curve of 80% (when the time required for the first unit is 10 hours)

\[
y = 10 \times (15)^{-0.322} \\
\log y = \log 10 - 0.322 \times \log 15 \\
\log y = \log 10 - 0.322 \times \log (5 \times 3) \\
\log y = \log 10 - 0.322 \times [\log 5 + \log 3] \\
\log y = 1 - 0.322 \times [0.69897 + 0.47712] \\
\log y = 0.6213 \\
y = \text{antilog of } 0.6213 \\
y = 4.181 \text{ hours} \\
\text{Total time for 15 units} = 15 \text{ units} \times 4.181 \text{ hours} \\
\text{= 62.72 hours}
\]

Time required for first 14 units based on revised learning curve of 80% (when the time required for the first unit is 10 hours)

\[
y = 10 \times (14)^{-0.322} \\
\log y = \log 10 - 0.322 \times \log 14 \\
\log y = \log 10 - 0.322 \times \log (2 \times 7) \\
\log y = \log 10 - 0.322 \times [\log 2 + \log 7] \\
\log y = 1 - 0.322 \times [0.3010 + 0.8451] \\
\log y = 0.63096 \\
y = \text{antilog of } 0.63096 \\
y = 4.275 \text{ hrs} \\
\text{Total time for 14 units} = 14 \text{ units} \times 4.275 \text{ hrs} \\
\text{= 59.85 hrs}
\]

Time required for 25 units based on revised learning curve of 80% (when the time required for the first unit is 10 hours)

Total time for first 15 units = 62.72 hrs
Total time for next 10 units = 28.70 hrs [(62.72 - 59.85) hours \times 10 units]
Total time for 25 units = 62.72 hrs + 28.70 hrs \\
\text{= 91.42 hrs}
W.N.2
Computation of Standard and Actual Rate

\[
\text{Standard Rate} = \frac{\text{₹1,19,288}}{180.74 \text{ hrs.}} = \text{₹ 660.00 per hr.}
\]

\[
\text{Actual Rate} = \frac{\text{₹79,704}}{118.08 \text{ hrs.}} = \text{₹ 675.00 per hr.}
\]

W.N.3
Computation of Variances

\[
\text{Labour Rate Variance} = \text{Actual Hrs} \times (\text{Std. Rate} - \text{Actual Rate}) = 118.08 \text{ hrs} \times (\text{₹660.00} - \text{₹675.00}) = \text{₹1,771.20 (A)}
\]

\[
\text{Labour Efficiency Variance} = \text{Std. Rate} \times (\text{Std. Hrs} - \text{Actual Hrs}) = \text{₹660} \times (91.42 \text{ hrs} - 118.08 \text{ hrs}) = \text{₹17,595.60 (A)}
\]

Statement of Reconciliation (Actual Figures Vs Budgeted Figures)

<table>
<thead>
<tr>
<th>Particulars</th>
<th>₹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual Cost</td>
<td>79,704.00</td>
</tr>
<tr>
<td>Less: Labour Rate Variance (Adverse)</td>
<td>1,771.20</td>
</tr>
<tr>
<td>Less: Labour Efficiency Variance (Adverse)</td>
<td>17,595.60</td>
</tr>
<tr>
<td>Budgeted Labour Cost (Revised)*</td>
<td>60,337.20</td>
</tr>
</tbody>
</table>

\[
\text{Budgeted Labour Cost (Revised)*} = \text{Std. Hrs} \times \text{Std. Rate} = 91.42 \text{ hrs} \times \text{₹660} = \text{₹ 60,337.20}
\]

Relevant Cost Approach to Variance Analysis

Traditional approach to variance analysis is to compute variances based on total actual cost for production inputs and total standard cost applied to the production output. This is ambiguous, when inputs are limited. Failure to use limited inputs properly leads not only to increased acquisition cost but also to a lost contribution. Therefore, it is necessary to consider the lost contribution in variance analysis. When this approach is used, price or expenditure variances are not affected.
Variance Analysis and Throughput Accounting

Variance analysis has no emphasis on the constrained resources. Instead, it is based on the efficiency and cost of operation of each part of the manufacturing system, rather than the ability of the entire system to generate a profit. Thus, a firm may find that it attains excellent efficiency and price variances by having long manufacturing rounds and buying in large quantities. A system based on constraint management will likely show very odd results under a variance reporting system. For example, when a terminal upstream from the constrained resource runs out of work, a manager functioning under throughput accounting system will shut it down in order to avoid the formation of an unnecessary level of work-in-process inventory. However, this will result into a negative labor efficiency variance, since the terminal’s staff is not actively producing anything. Throughput accounting does use variance analysis, but not the ones used by a traditional system. Instead, its main emphasis is on tracking variations in the size of the inventory buffer placed before the constrained resource, to confirm that the constraint is never halted due to an inventory shortage.

Variance Analysis in Advanced Manufacturing Environment/ High-Technology Firms

The variance analysis generally applies to all types of organizations; however, high-technology firms like Audio Technology, Automotive, Computer Engineering, Electrical and Electronic Engineering, Information Technology, Medical devices, Nanotechnology, Semiconductors, Telecommunication apply the model somewhat differently. Now much of electronic industry is highly automated. A large part of manufacturing process is computerized. In the high-technology environment that is emerging, many costs that once were largely variable have become fixed, most becoming committed fixed cost. Some high technology manufacturing organizations have found that the two largest variable costs involve materials and power to operate machines. In these companies, the emphasis of variance analysis is placed on direct materials and variable manufacturing overhead.

Much of the manufacturing labour consists of highly skilled experts/ operators/ programmers are largely committed cost. Firms don’t want to take risk losing such highly trained personnel even during an economic downturn. The result is less direct labour and more overhead. For these firms labour variances may no longer be meaningful because direct labour is a committed cost, not a cost expected to vary with output.

Standard Costing in Service Sector

Standard Costing can be equally applicable for various types of industries for example accountants, solicitors, dentists, hairdressers, transport companies and hotels. Service industries comprise a wide range of different businesses that differ in size and types of service provided. Standard costing and variance analysis is more tough to apply to service sector organizations as major portion of their cost is comprised of overhead expenses rather than production expenses. While traditional variance analysis of overheads does not deliver very useful information for overheads control purposes, application of activity based costing can provide an effective basis for variance analysis of overheads in service sector organizations although this may need significant time and effort in the implementation of a MIS.
McDonaldization

McDonaldization is a process of rationalisation, which takes a task and breaks it down into smaller tasks. This is repeated until all tasks have been broken down to the smallest possible level. The resulting tasks are then rationalised to find the single most efficient method for completing each task. All other methods are then deemed inefficient and discarded.

The impact of McDonaldization is that standards can be more accurately set and assessed. It can be easily ascertained that how much time and cost should go into each activity. The principles can be applied to many other services, such as hairdressing, dentistry, or opticians’ services.

Source: www.mcdonaldization.com/whatisit.shtml

Standard Costing in Public Sector

In order to cost control in public sector (e.g. street cleaning refuse disposal and so on), regular variance analysis is required. Actual unit costs should be calculated on a monthly basis and compared with estimated unit cost. To achieve this comparison, information needs to be maintained about the unit of service adopted. For example, statistics would be maintained on the number of visits made and the number of hours worked. In this example, time recording may be beneficial in providing the detailed information necessary for variance analysis. Actual monthly costs should be taken from the organisation’s financial management system and each month financial reports should be produced which offer an accurate image of budgeted vs actual expenditure. These reports are must for budgetary control. Actual expenditure reported on financial systems may require some modification to take account of:

- Trade Payables (services used but bills unpaid)
- Accruals (services used but bills yet to be received)
- Timing Differences (some costs are not incurred evenly over the year)

Source: Costing and Pricing Public Sector Services: Essential Skills for the Public Sector (2011) By Jennifer Bean, Lascelles Hussey

STANDARD MARGINAL COSTING

Standards and Variances can be calculated on the basis of marginal costing. A standard marginal costing system incorporates only costs which are variable to the product. Accordingly, the absorption of fixed costs, and the variances derived therefrom, do not feature in a standard marginal costing system. When Marginal Costing is in use there is no Overhead Volume Variance, because Marginal Costing does not absorb Fixed Overhead. Fixed Overhead Expenditure Variance is the only variance for Fixed Overhead in a Marginal Costing system. It is calculated as in an Absorption Costing system.
Sales Variances

Sales Variances can be used to analyse the performance of the revenue centres on broadly identical terms to those for manufacturing costs. The most important aspect of sales variance calculations is that they are calculated in terms of profit or contribution. Sales directly influences the total profits. Thus, a more meaningful performance measure will be obtained by comparing the results of the sales function in terms of profit or contribution rather than sales revenue.

In standard absorption costing system, profit margins are used (selling price less total unit manufacturing cost), whereas with a standard marginal costing system, contribution (selling price less unit manufacturing variable cost) are used to calculate the variances.

If marginal costing approach is adopted, sales contribution variance pursues to identify the influence of the sales function on the difference between budget and actual contribution.

“Sales function is responsible for the sales volume and the unit selling price, but not the unit manufacturing costs, the standard cost of sales and not the actual cost of sales is deducted from actual sales price.”

Sales Contribution Variance is the difference between the actual contribution and budgeted contribution (based on standard unit costs).

\[
\text{Sales Contribution Variance} = \text{Actual Contribution} - \text{Budgeted Contribution}
\]

The effect of using standard costs throughout the contribution calculations means that the sales variances arise because of changes in those variables controlled by the sales function (i.e. selling prices and sales quantity). Therefore, it is possible to analyse the sales contribution variance into two sub-variances – a sales contribution price variance and a sales contribution volume variance.

Sales Contribution Price Variance

\[
\text{Sales Contribution Price Variance} = (\text{Actual Contribution per unit} - \text{Standard Contribution per unit}) \times \text{Actual Quantity}
\]

Sales Contribution Volume Variance

\[
\text{Sales Contribution Volume Variance} = (\text{Actual Quantity} - \text{Budgeted Quantity}) \times \text{Standard Contribution per unit}
\]

* based on standard unit costs

Where a company sells several different products that have different contributions, the sales volume contribution variance can be divided into a sales quantity and sales mix variance. The quantity variance measures the effect of changes in physical volume on total contribution, and the mix variance measures the impact arising from actual sales mix being different from budgeted sales mix.
STANDARD COSTING

Sales Contribution Mix Variance

\[\text{Sales Contribution Mix Variance} = (\text{Actual Quantity} - \text{Actual Quantity in Budgeted Proportions}) \times \text{Standard Contribution per unit} \]

Sales Contribution Quantity Variance

\[\text{Sales Contribution Quantity Variance} = (\text{Actual Quantity in Budgeted Proportion} - \text{Budgeted Quantity}) \times \text{Standard Contribution per unit} \]

Where industry’s sales data is readily available, it is possible to divide the sales quantity variance into a component due to change in market size and a component due to change in market share. The formulae and calculations of the market size and market share variances are as follows:

Market Size Variance
\[\text{Market Size Variance} = \left[\text{Budgeted Market Share} \% \times (\text{Actual Industry Sales Quantity in units} - \text{Budgeted Industry Sales Quantity in units}) \times \text{Average Budgeted Contribution per unit} \right] \]

Market Share Variance
\[\text{Market Share Variance} = \left[(\text{Actual Market Share} \% - \text{Budgeted Market Share} \%) \times (\text{Actual Industry Sales Quantity in units}) \times \text{Average Budgeted Contribution per unit} \right] \]

RECONCILIATION OF PROFIT

Generally, under variance analysis we compute various variances from the actual and the standard/budgeted data. Sometimes all or a few variances and actual data are made available and from that we are required to prepare standard product cost sheet, original budget and to reconcile the budgeted profit with the actual profit.

Some important concept are given below:
Reconciliation Statement-I

Budgeted Profit to Actual Profit (Absorption Costing)

Budgeted Profit

(Budgeted Quantity × Standard Margin)

Effect of Variances

Material Cost Variance

- Material Price Variance
- Material Usage Variance
 - Material Mix Variance
 - Material Yield Variance

Labour Cost Variance

- Labour Rate Variance
- Labour Idle Time Variance
- Labour Efficiency Variance
 - Labour Mix Variance
 - Labour Sub-Efficiency Variance

Variable Overhead Cost Variances

- Variable Overhead Expenditure Variance
- Variable Overhead Efficiency Variance

Fixed Overhead Cost Variances

- Fixed Overhead Expenditure Variance
- Fixed Overhead Volume Variance
 - Fixed Overhead Capacity Variance
 - Fixed Overhead Efficiency Variance

Sales Margin Variances (in terms of Profit)

- Sales Margin Price Variance
- Sales Margin Volume Variance
 - Sales Margin Mix Variance
 - Sales Margin Quantity Variance

Actual Profit
Reconciliation Statement-II
Budgeted Profit to Actual Profit (Marginal Costing)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgeted Profit</td>
<td></td>
</tr>
<tr>
<td>(Budgeted Quantity × Standard Margin)</td>
<td></td>
</tr>
<tr>
<td>Effect of Variances</td>
<td></td>
</tr>
<tr>
<td>Material Cost Variance</td>
<td></td>
</tr>
<tr>
<td>Material Price Variance</td>
<td></td>
</tr>
<tr>
<td>Material Usage Variance</td>
<td></td>
</tr>
<tr>
<td>Material Mix Variance</td>
<td></td>
</tr>
<tr>
<td>Material Yield Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Cost Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Rate Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Idle Time Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Efficiency Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Mix Variance</td>
<td></td>
</tr>
<tr>
<td>Labour Sub-Efficiency Variance</td>
<td></td>
</tr>
<tr>
<td>Variable Overhead Cost Variances</td>
<td></td>
</tr>
<tr>
<td>Variable Overhead Expenditure Variance</td>
<td></td>
</tr>
<tr>
<td>Variable Overhead Efficiency Variance</td>
<td></td>
</tr>
<tr>
<td>Fixed Overhead Cost Variances</td>
<td></td>
</tr>
<tr>
<td>Fixed Overhead Expenditure Variance</td>
<td></td>
</tr>
<tr>
<td>Fixed Overhead Volume Variance</td>
<td></td>
</tr>
<tr>
<td>Fixed Overhead Capacity Variance</td>
<td>NA</td>
</tr>
<tr>
<td>Fixed Overhead Efficiency Variance</td>
<td>NA NA</td>
</tr>
<tr>
<td>Sales Contribution Variances</td>
<td></td>
</tr>
<tr>
<td>Sales Contribution Price Variance</td>
<td></td>
</tr>
<tr>
<td>Sales Contribution Volume Variance</td>
<td></td>
</tr>
<tr>
<td>Sales Contribution Mix Variance</td>
<td></td>
</tr>
<tr>
<td>Sales Contribution Quantity Variance</td>
<td></td>
</tr>
<tr>
<td>Actual Profit</td>
<td></td>
</tr>
</tbody>
</table>
Reconciliation Statement-III

Standard Profit to Actual Profit (Absorption Costing)

Standard Profit

\[(\text{Actual Quantity} \times \text{Standard Margin})\]

Effect of Variances

Material Cost Variance
- Material Price Variance
- Material Usage Variance
 - Material Mix Variance
 - Material Yield Variance

Labour Cost Variance
- Labour Rate Variance
- Labour Idle Time Variance
- Labour Efficiency Variance
 - Labour Mix Variance
 - Labour Sub-Efficiency Variance

Variable Overhead Cost Variances
- Variable Overhead Expenditure Variance
- Variable Overhead Efficiency Variance

Fixed Overhead Cost Variances
- Fixed Overhead Expenditure Variance
- Fixed Overhead Volume Variance
 - Fixed Overhead Capacity Variance
 - Fixed Overhead Efficiency Variance

Sales Margin Variance (in terms of Profit)
- Sales Margin Price Variance
- Sales Margin Volume Variance
 - Sales Margin Mix Variance
 - Sales Margin Quantity Variance

Actual Profit

© The Institute of Chartered Accountants of India
Illustration

Osaka Manufacturing Co. (OMC) is a leading consumer goods company. The budgeted and actual data of OMC for the year 2016-17 are as follows-

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Budget</th>
<th>Actual</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales / Production (units)</td>
<td>2,00,000</td>
<td>1,65,000</td>
<td>(35,000)</td>
</tr>
<tr>
<td>Sales (₹)</td>
<td>21,00,000</td>
<td>16,92,900</td>
<td>(4,07,100)</td>
</tr>
<tr>
<td>Less: Variable Costs (₹)</td>
<td>12,66,000</td>
<td>10,74,150</td>
<td>1,91,850</td>
</tr>
<tr>
<td>Less: Fixed Costs (₹)</td>
<td>3,15,000</td>
<td>3,30,000</td>
<td>(15,000)</td>
</tr>
<tr>
<td>Profit</td>
<td>5,19,000</td>
<td>2,88,750</td>
<td>(2,30,250)</td>
</tr>
</tbody>
</table>

The budgeted data shown in the table is based on the assumption that total market size would be 4,00,000 units but it turned out to be 3,75,000 units.

Required

PREPARE a statement showing reconciliation of budget profit to actual profit through marginal costing approach for the year 2016-17 in as much detail as possible.

Solution

Statement of Reconciliation - Budgeted Vs Actual Profit

<table>
<thead>
<tr>
<th>Particulars</th>
<th>₹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgeted Profit</td>
<td>5,19,000</td>
</tr>
<tr>
<td>Less: Sales Volume Contribution - Planning Variance (Adverse)</td>
<td>52,125</td>
</tr>
<tr>
<td>Less: Sales Volume Contribution - Operational Variance (Adverse)</td>
<td>93,825</td>
</tr>
<tr>
<td>Less: Sales Price Variance (Adverse)</td>
<td>39,600</td>
</tr>
<tr>
<td>Less: Variable Cost Variance (Adverse)</td>
<td>29,700</td>
</tr>
<tr>
<td>Less: Fixed Cost Variance (Adverse)</td>
<td>15,000</td>
</tr>
<tr>
<td>Actual Profit</td>
<td>2,88,750</td>
</tr>
</tbody>
</table>

Workings

Basic Workings

Budgeted Market Share (in %) = \(\frac{2,00,000\text{ units}}{4,00,000\text{ units}} \) = 50%

Actual Market Share (in %) = \(\frac{1,65,000\text{ units}}{3,75,000\text{ units}} \) = 44%
Budgeted Contribution = \(\text{₹} 21,00,000 - \text{₹} 12,66,000 \)
\[= \text{₹} 8,34,000 \]

Average Budgeted Contribution (per unit) = \(\frac{\text{₹} 8,34,000}{2,00,000} \)
\[= \text{₹} 4.17 \]

Standard Sales Price per unit = \(\frac{\text{₹} 21,00,000}{2,00,000} \)
\[= \text{₹} 10.50 \]

Actual Sales Price per unit = \(\frac{\text{₹} 16,92,900}{1,65,000} \)
\[= \text{₹} 10.26 \]

Standard Variable Cost per unit = \(\frac{\text{₹} 12,66,000}{2,00,000} \)
\[= \text{₹} 6.33 \]

Actual Variable Cost per unit = \(\frac{\text{₹} 10,74,150}{1,65,000} \)
\[= \text{₹} 6.51 \]

CALCULATION OF VARIANCES

Sales Variances

Volume Contribution Planning* = Budgeted Market Share % \times (Actual Industry Sales Quantity in units - Budgeted Industry Sales Quantity in units) \times (Average Budgeted Contribution per unit)
\[= 50\% \times (3,75,000 \text{ units} - 4,00,000 \text{ units}) \times \text{₹} 4.17 \]
\[= \text{₹} 52,125 \] (A)

(*) Market Size Variance

Volume Contribution Operational** = (Actual Market Share % - Budgeted Market Share %) \times (Actual Industry Sales Quantity in units) \times (Average Budgeted Contribution per unit)
\[= (44\% - 50\%) \times 3,75,000 \text{ units} \times \text{₹} 4.17 \]
\[= \text{₹} 93,825 \] (A)

(**) Market Share Variance
Price
= Actual Sales – Standard Sales
= Actual Sales Quantity × (Actual Price – Standard Price)
= 1,65,000 units × (¥10.26 – ¥10.50)
= 39,600 (A)

Variable Cost Variances
Cost
= Standard Cost for Production – Actual Cost
= Actual Production × (Standard Cost per unit – Actual Cost per unit)
= 1,65,000 units × (¥6.33 – ¥6.51)
= ¥29,700(A)

Fixed Cost Variances
Expenditure
= Budgeted Fixed Cost – Actual Fixed Cost
= ¥3,15,000 – ¥3,30,000
= ¥15,000 (A)

INVESTIGATION OF VARIANCES

Variance analysis focuses on deviations, but all deviations cannot be taken as 'out of Control' situations. However, variance investigation on the other hand may not be fruitful in any given situation considering that it requires resources and thus a cost benefit analysis should be considered before undertaking investigation. Investigating variances is a key step in using variance analysis as part of performance management. “Interpretation may suggest possible cause of variances but investigation must arrive at definite conclusions about the cause of the variance so that action to correct the variance can be effective.” There are behavioural as well as technical consequences to the decision to investigate variances. If no variances are investigated, it may cease to be motivated by the system which produce variances. Investigating favourable and adverse variances may create positive behavioural reinforcements, with implications for motivation, aspiration levels and inter-departmental relationships.

Factors to be Considered When Investigating Variance

Certain set of factors should be considered before undertaking the variance investigation of the actual performance against the estimates set.

Size: A standard is seen as an average of the estimates and therefore small variations seen from the standard should be ignored and not investigated further. In addition organizations can establish limits and the variances seen beyond those limits should be undertaken for further investigation.
Type of Variance: Adverse variance is given more importance by the organization over favorable variances seen with regards to the estimates.

Cost: The costs associated with the undertaking of the investigation should be lower than the benefits associated with the investigation of variances for the organization to undertake the said investigation.

Pattern in variance: The variances need to be monitored over a period of time and if the variance of a particular cost is seen to be worsening over time then in that case the investigation in relation to the variance needs to be undertaken.

Budgetary process: In case the budgetary process is uncontrollable and unrealistic then in that case the investigation should be re-evaluating the budgetary process rather than undertaking investigation of the variances.

Method Used for Investigating Variance

Simple Rule of Thumb Model

It is based on arbitrary criteria such as investigating if the absolute size of a variance is greater than a certain amount or if the ratio of the variance to the total cost exceeds some predetermined percentage. They are based on managerial judgement and do not consider statistical significance.

Statistical Decision Model

For the statistical models, two mutually exclusive states are possible. First assumes that the system is 'In Control' and a variance is simply due to random fluctuations around the expected outcome. The second possible state is that the system is in some way 'Out of Control' and corrective action can be taken to remedy the situation.

An investigation is undertaken when the probability that an observation comes from an ‘In-Control’ distribution falls below some arbitrarily determined probability level.

A number of cost variance investigation models have been proposed that determine the statistical probability that a variance comes from an ‘In Control’ distribution.

Determining Probabilities

‘In Control’ state can be stated in the form of a known probability distribution such as a normal one.

Let’s take example, consider a situation where the standard time required for a particular project has been derived from the average of a series of past experience made under ‘close’ supervision. The average time is 2.5 hrs. per unit of output. We shall consider that the actual observations were normally distributed with a standard deviation of 15 minutes. Suppose that the actual time taken for a week was 3,000 hrs. for output of 1,000 units. Thus, average time taken was 3 hrs. per unit of output. We can determine the probability of perceiving an average time of 3 hrs. or more when the process is under control through application of normal distribution theory. An observation of an average time taken of 3 hrs. per unit of output is 2 standard deviations from the expected value, where, for a normal distribution,
Probability of Completing the Project in 3 hrs.

\[Z = \frac{X-\mu}{\sigma} \]

\[Z = \frac{3.00 - 2.50}{0.25} \]

\[Z = 2.0 \]

\[P(Z = 2.0) = 0.9772 \]

Probability of Completing the Project in more than 3 hrs.

\[P = 1 - 0.9772 \]

\[= 0.0228 \]

The shaded area illustrates that 0.0228 of the area under the curve (\(\mu + 2\sigma\)). Thus, the probability of actual time taken per unit of output being 3 hrs. or more when the operation is under control is 2.28%.

It is likely that this observation comes from another distribution and that the time taken for the week is out of control.

Statistical Control Charts

Statistical quality control is used mainly for monitoring and maintaining of the quality of products and services, but within a standard costing framework, statistical control charts can be used to monitor accounting variances. For example, labour usage could be plotted on a control chart on an hourly basis for each project. This process would consist of sampling the output from a project and plotting on the chart the mean usage of resources per unit for the sample output.

A control chart is a graphic presentation of a series of past observations in which each observation is plotted relative to pre-set points on the expected distribution. Only observations beyond specified pre-set control / tolerance limits are considered for investigation. The control limits are set based on a series of past observations of a process when it is under control, and thus working efficiently. It is assumed that the past observations can be represented by a normal distribution.
The past observations are used to estimate the population mean μ and the population standard deviation σ. Assuming that the distribution of possible outcomes is normal, then, when the process is under control, we should expect

- 68.27% of the observations to fall within the range $\mu \pm \sigma$ from the mean;
- 95.45% of the observations to fall within the range $\mu \pm 2\sigma$ from the mean;
- 99.8% of the observations to fall within the range $\mu \pm 3\sigma$ from the mean.

For example, if control limits are set based on 2σ from the mean then this would show 4.55% (100% - 95.45%) of future observations would result from pure chance when the process is under control. Therefore, there is a high probability that an observation outside the 2σ control limits is out of control.

Above Figure shows three control charts, with the outer horizontal lines representing a possible control limit of 2σ, so that all observations outside this range are investigated.

For Project A the process is deemed to be in control because all observations fall within the control limits.

For Project B the last two observations suggest that the project is out of control. Therefore, both observations should be investigated.

With Project C, the observations would not prompt an investigation because all the observations are within the control limits. However, the last six observations show a gradually increasing usage in excess of the mean, and the process may be out of control. Statistical procedures that consider the trend in recent usage as well as daily usage can also be used.

Statistical decision models have been extended to incorporate the costs and benefits of investigation.

Decision rule to investigate if

$$PB > C$$

Where,

P is the probability that the process is ‘Out of Control’
STANDARD COSTING

B is the *benefit* associated with returning the process to its 'In-Control' state if the process is 'Out of Control'. Benefit represents the cost saving that will arise through bringing the system back under control and thereby avoiding variances in future periods.

C is the *cost* will be incurred when an investigation is undertaken and includes the manager's time spent on investigation, the cost of interrupting the production process, and the cost of correcting the process. C is known with certainty.

The model requires an estimate of **P**, the probability that the process is 'Out of Control'. Bierman et al. (1961) have suggested that the probabilities could be determined by computing the probability that a particular observation, such as a variance, comes from an 'In Control' distribution. It also considers that the 'In-Control' state can be expressed in the form of a known probability distribution such as a *normal distribution*.

Let us assume that the incremental cost of investigating the labour efficiency variance in our example is ₹25. Assume also that the estimated benefit **B** from investigating a variance and taking corrective action is ₹100.

Investigate if

\[P > \frac{25}{100} \text{ or } 0.25 \]

Consider our example, the probability of an observation of 3 hrs (or larger) was 0.0228. The probability of the process being 'Out of Control' is one minus the probability of being 'In Control'. Thus, \(P = 0.9772 \) (1 - 0.0228). We ascertained that the variance should be investigated if the probability that the process is 'Out of Control' is > 0.25. The process should therefore be investigated.

1 Reference: *Management and Cost Accounting* by Colin M. Drury

POSSIBLE INTERDEPENDENCE BETWEEN VARIANCES

It is a term used to express the way in which the cause of one variance may be wholly or partially explained by the cause of another variance. For control purposes, it might therefore be essential to look at several variances together and not in isolation.

Some examples of interdependence between variances are listed below:

- Use of cheaper material which is poorer quality, the material price variance will be favourable, but this can cause more wastage of materials leading to adverse usage variance.

- Using more skilled labour to do the work will result in an adverse labour rate variance, but productivity might be higher as a result due to experienced labour.
Changing the composition of a team might result in a cheaper labour mix (favourable mix variance) but lower productivity (adverse yield variance).

Workers trying to improve productivity (favourable efficiency variance) in order to get bonus (adverse rate variance) might use materials wastefully in order to save time (adverse materials usage).

Cutting sales prices (adverse sales price variance) might result in higher sales demand from customers (favourable sales volume variance).

Similarly, favourable sales price variance may result in adverse sales volume variance.

INTERPRETATION OF VARIANCES

There can be a number of potential causes leading to variances in the operational costs

Material Price Variance

- Might be caused due to the use of a different supplier.
- Order size can result in variance.
- Any form of unexpected increase in buying costs such as higher delivery charges.
- Efficiency or inefficiency associated with the buying procedure adopted.
- Lack of appropriate inventory control can result in emergency purchase of material resulting in adverse variance.

Material Usage Variance

- Purchase of inferior quality material.
- Implementation of better quality control.
- Increased efficiency in production can help in bringing down wastage rate.
- Changes made in the material mix.
- Careless way of handling material by production department.
- Change in method of production/design.
- Pilferage of material from the production department.
- Poor inspection.
Labour Rate Variance

- Unexpected increase in the pay rate of labour.
- Level of experience of the labour can impact the direct cost of labour.
- Payment of bonuses added to the direct labour costs.
- Change in the composition of the workforce can impact direct labour costs.

Labour Efficiency Variance

- Improvement in work or productivity efficiency.
- Workforce mix can have an impact upon labour efficiency levels.
- Industrial action in relation to workforce.
- Poor supervision of the workforce.
- Learning curve effect upon the labour efficiency levels.
- Resource shortages causing an unexpected delay and lowering of labour efficiency levels.
- Using inferior quality of material.
- Introduction of new machinery resulting in improvement of labour productivity levels.

Overhead Variances

- Fixed Overhead Expenditure Variance (adverse) are caused by spending in excess of the budget.
- Fixed Overhead Volume Variance is caused by changes in production volume.
- Variable Overhead Expenditure Variance are often caused by changes in machine running costs.
- Variable Overhead Efficiency Variances- Causes are similar to those for a direct labour efficiency variance.

Sales Price Variance

- Higher discounts given to customers in order to encourage bulk purchases.
- The effect of low price offers during a marketing campaign.
- Poor performance by sales personnel.
- Market conditions or economic conditions forcing changes in prices across the industry.
Sales Volume Variance

- Successful or unsuccessful direct selling efforts.
- Successful or unsuccessful marketing efforts (for example, the effects of an advertising campaign).
- Unexpected changes in customer preferences and buying patterns.
- Failure to satisfy demand due to production difficulties.
- Higher demand due to a cut in selling prices, or lower demand due to an increase in sales prices.

Illustration

Queensland Chemicals (QC) manufactures high-quality chemicals C-1, C-2 and C-3. Extracts from the budget for last year are given below:

<table>
<thead>
<tr>
<th></th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Quantity (kg)</td>
<td>1,000</td>
<td>3,250</td>
<td>750</td>
</tr>
<tr>
<td>Average Selling Price</td>
<td>₹17,600</td>
<td>₹2,560</td>
<td>₹22,400</td>
</tr>
<tr>
<td>Direct Material (C$_2$H$_6$O) Cost</td>
<td>₹8,000</td>
<td>₹1,280</td>
<td>₹9,600</td>
</tr>
<tr>
<td>Direct Labour Cost</td>
<td>₹3,200</td>
<td>₹480</td>
<td>₹4,800</td>
</tr>
<tr>
<td>Variable Overhead Cost</td>
<td>₹320</td>
<td>₹48</td>
<td>₹480</td>
</tr>
</tbody>
</table>

The budgeted direct labour cost per hour was ₹160.

Actual results for last year were as follows:

<table>
<thead>
<tr>
<th></th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Quantity (units)</td>
<td>900</td>
<td>3,875</td>
<td>975</td>
</tr>
<tr>
<td>Average Selling Price</td>
<td>₹19,200</td>
<td>₹2,480</td>
<td>₹20,000</td>
</tr>
<tr>
<td>Direct Material (C$_2$H$_6$O) Cost</td>
<td>₹8,800</td>
<td>₹1,200</td>
<td>₹10,400</td>
</tr>
<tr>
<td>Direct Labour Cost</td>
<td>₹3,600</td>
<td>₹480</td>
<td>₹4,800</td>
</tr>
<tr>
<td>Variable Overhead Cost</td>
<td>₹480</td>
<td>₹64</td>
<td>₹640</td>
</tr>
</tbody>
</table>

The actual direct labour cost per hour was ₹150. Actual variable overhead cost per direct labour hour was ₹20. QC follows just in time system for purchasing and production and does not hold any inventory.
Required

INTERPRET the Sales Mix Variance and Sales Quantity variance in terms of contribution.

Solution

Variance Interpretation

The sales quantity variance and the sales mix variance describe how the sales volume contribution variance has been affected by a change in the *total quantity of sales* and a *change in the relative mix of products sold*.

From the figures arrived for the sales quantity contribution variance, we can observe that the increase in total quantity sold would have gained an additional contribution of ₹2,124,600, if the actual sales volume had been in the budgeted sales proportion.

The sales mix contribution variance shows that the variation in the sales mix resulted in a curtailment in profit by ₹570,600. The change in the sales mix has resulted in a relatively higher proportion of sales of C-2 which is the chemical that earns the lowest contribution and a lower proportion of C-1 which earn a contribution significantly higher. The relative increase in the sale of C-3 however, which has the highest unit contribution, has partially offset the switch in mix to C-2.

Workings

Statement Showing Standard Contribution

<table>
<thead>
<tr>
<th></th>
<th>C-1 ₹/ kg</th>
<th>C-2 ₹/ kg</th>
<th>C-3 ₹/ kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Selling Price</td>
<td>17,600</td>
<td>2,560</td>
<td>22,400</td>
</tr>
<tr>
<td>Direct Material (C₂H₆O) Cost</td>
<td>8,000</td>
<td>1,280</td>
<td>9,600</td>
</tr>
<tr>
<td>Direct Labour Cost</td>
<td>3,200</td>
<td>480</td>
<td>4,800</td>
</tr>
<tr>
<td>Variable Overhead Cost</td>
<td>320</td>
<td>48</td>
<td>480</td>
</tr>
<tr>
<td>Contribution</td>
<td>6,080</td>
<td>752</td>
<td>7,520</td>
</tr>
</tbody>
</table>

Sales Contribution Mix Variance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>900</td>
<td>1,150</td>
<td>250 (A)</td>
<td>6,080</td>
<td>1,520 (A)</td>
</tr>
<tr>
<td>C-2</td>
<td>3,875</td>
<td>3,737.50</td>
<td>137.50 (F)</td>
<td>752</td>
<td>103.40 (F)</td>
</tr>
<tr>
<td>C-3</td>
<td>975</td>
<td>862.50</td>
<td>112.50 (F)</td>
<td>7,520</td>
<td>846 (F)</td>
</tr>
<tr>
<td></td>
<td>5,750</td>
<td>5,750</td>
<td></td>
<td></td>
<td>570.60 (A)</td>
</tr>
</tbody>
</table>
Sales Contribution Quantity Variance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>1,000</td>
<td>1,150</td>
<td>150 (F)</td>
<td>6,080</td>
<td>912 (F)</td>
</tr>
<tr>
<td>C-2</td>
<td>3,250</td>
<td>3,737.50</td>
<td>487.50 (F)</td>
<td>752</td>
<td>366.60 (F)</td>
</tr>
<tr>
<td>C-3</td>
<td>750</td>
<td>862.50</td>
<td>112.50 (F)</td>
<td>7,520</td>
<td>846 (F)</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>5,750</td>
<td></td>
<td></td>
<td>2,124.60 (F)</td>
</tr>
</tbody>
</table>

Case Scenario

Natural Spices manufactures and distributes high-quality spices to gourmet food shops and top quality restaurants. Gourmet and high-end restaurants pride themselves on using the freshest, highest-quality ingredients.

Natural Spices has set up five state of the art plants for meeting the ever-growing demand. The firm procures raw material directly from the centers of produce to maintain uniform taste and quality. The raw material is first cleaned, dried and tested with the help of special machines. It is then carefully grounded into the finished product passing through various stages and packaged at the firm’s ultraclean factory before being dispatched to customers.

The following variances pertain to last week of operations, arose as a consequence of management’s decision to lower prices to increase volume.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Volume Variance</td>
<td>18,000 (F)</td>
</tr>
<tr>
<td>Sales Price Variance</td>
<td>14,000 (A)</td>
</tr>
<tr>
<td>Purchase Price Variance</td>
<td>10,000 (F)</td>
</tr>
<tr>
<td>Labour Efficiency Variance</td>
<td>11,200 (F)</td>
</tr>
<tr>
<td>Fixed Cost Expenditure Variance</td>
<td>4,400 (F)</td>
</tr>
</tbody>
</table>

Required

(i) Identify the ‘Critical Success Factors’ for Natural Spices.

(ii) Evaluate the management’s decision with the ‘Overall Corporate Strategy’ and ‘Critical Success Factors’.

Solution

(i) Gourmet and high-end restaurants recognise Natural Spices on the basis of its high quality of spices. Therefore, quality is most critical success factor of Natural Spices. There are other factors which cannot be ignore such as price, delivery options, attractive packing etc. But all are secondary to the quality.
(ii) Deliberate action of cutting price to increase sales volume indicates that firm is intending to expand its market to retail market and street shops which is price sensitive.

Purchase Price Variance is clearly indicating that firm has purchased raw material at lower price which may be due to buying of lower quality of material. Similarly, positive *Efficiency Variance* is indicating cost cutting and stretching resources.

It appears that firm is intending to expand its market to retail market and street shops by not only reducing the price but also compromising its quality which is opposing its current strategy of *high quality*.

Management should monitor the trends of variances on regular basis and take appropriate action in case of evidence of permanent decline in quality. Here, customer feedback is also very important.

REPORTING OF VARIANCES

Computation of variances and their reporting is not the final step towards the control of various elements of cost. It infact demands an analysis of variances from the side of the executives, to ascertain the correct reasons for their occurrence. After knowing the exact reasons, it becomes their responsibility to take necessary steps so as to stop the re-occurrence of adverse variances in future. To enhance the utility of such a reporting system it is necessary that such a system of reporting should not only be prompt but should also facilitate the concerned managerial level to take necessary steps. Variance reports should be prepared after keeping in view its ultimate use and its periodicity. Such reports should highlight the essential cost deviations and possibilities for their improvements. In fact the variance reports should give due regard to the following points :-

(i) The concerned executives should be informed about what the cost performance should have been.

(ii) How close the actual cost performance is with reference to standard cost performance.

(iii) The analysis and causes of variances.

(iv) Reporting should be based on the principle of management by exception.

(v) The magnitude of variances should also be stated.

BEHAVIOURAL ISSUES

Variance analysis may encourage short-termism due to their inherent tendency towards short-term, quantified objectives and results.

A negative perception of an organization's variance analysis process can also encourage other sub-optimal behaviour among employees such as attempts to include budget slacks.
The behavioural issues connected with variance analysis could be managed by participating employees during budget setting so that they do not assess the procedure as biased. It is also vital for an organization's performance measurement system to be based on a extensive range of quantitative and qualitative measures so as to encourage management to adopt a long-term view that is aligned with an organization's strategic direction.

Source: Managerial Accounting: A Focus on Ethical Decision Making by Steve Jackson, Roby Sawyers, Greg Jenkins

<table>
<thead>
<tr>
<th>Ethics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance analysis for evaluating performance can have strong ethical consequences. For example, standard costing methods have been proposed for medicine as a means for improving performance. Interpretation of a favourable variance may be difficult because it either reflects insufficient treatment or compliance to guidelines. Most hospitals in various countries are reimbursed as specified by the diagnostic related groups (DRG). Each DRG has specified standard “length of stay”. If a patient leaves the hospital early, the hospital is financial impacted favourably but a patient staying longer than the specified time costs the hospital money.</td>
</tr>
</tbody>
</table>

STANDARD COSTING IN CONTEMPORARY BUSINESS ENVIRONMENT

- Products in these environments tend not to be standardised
- Standard costs become outdated quickly
- Production is highly automated
- Modern environments often use ideal standards rather than current standards
- The emphasis is on continuous improvement so pre-set standards become less useful
- Variance analysis may not give enough detail
- Variance reports may arrive too late to solve problems

Source: Accounting: An Introduction, 6/E By Peter Atrill, Eddie McLaney, David Harvey
Sales Variances (Absorption Costing)

Sales Margin Variance*

\[
\text{Sales Margin Variance} = (\text{Actual Margin}) \text{ Less (Budgeted Margin)} \\
\left[(AQ \times AM) - (BQ \times SM) \right]
\]

Sales Margin Price Variance

\[
\text{Sales Margin Price Variance} = (\text{Actual Margin}) \text{ Less (Standard Margin)} \\
\left[(AM \times AQ) - (SM \times AQ) \right] \\
\text{Or} \\
\left[AQ \times (AM - SM) \right]
\]

Sales Margin Volume Variance

\[
\text{Sales Margin Volume Variance} = (\text{Standard Margin}) \text{ Less (Budgeted Margin)} \\
\left[(SM \times AQ) - (SM \times BQ) \right] \\
\text{Or} \\
\left[SM \times (AQ - BQ) \right]
\]

Sales Margin Mix Variance

\[
\text{Sales Margin Mix Variance} = (\text{Standard Margin}) \text{ Less (Revised Standard Margin)} \\
\left[(AQ \times SM) - (RAQ \times SM) \right] \\
\text{Or} \\
\left[SM \times (AQ - RAQ) \right]
\]

Sales Margin Quantity Variance

\[
\text{Sales Margin Quantity Variance} = (\text{Revised Standard Margin}) \text{ Less (Budgeted Margin)} \\
\left[(RAQ \times SM) - (BQ \times SM) \right] \\
\text{Or} \\
\left[SM \times (RAQ - BQ) \right]
\]

Alternative Formula

\[
\text{Alternative Formula} = \left[\text{Total Actual Qty. (units)} \times \left\{ \left(\text{Average Standard Margin per unit of Actual Mix} \right) \text{ Less (Average Budgeted Margin per unit of Budgeted Mix)} \right\} \right]
\]

Market Size Variance

\[
\text{Market Size Variance} = \left[\text{Budgeted Market Share %} \times (\text{Actual Industry Sales Quantity in units} \text{ Less (Budgeted Industry Sales Quantity in units)}) \times (\text{Average Budgeted Margin per unit}) \right]
\]

Market Share Variance

\[
\text{Market Share Variance} = \left[(\text{Actual Market Share %} \text{ Less (Budgeted Market Share %)}) \times (\text{Actual Industry Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit}) \right]
\]

* in terms of profit
Note:

- **BQ** = Budgeted Sales Quantity
- **AQ** = Actual Sales Quantity
- **RAQ** = Revised Actual Sales Quantity
 - = Actual Quantity Sold Rewritten in Budgeted Proportion
- **SM** = Standard Margin
 - = Standard Price per Unit – Standard Cost per Unit
- **AM** = Actual Margin
 - = Actual Sales Price per Unit – Standard Cost per Unit

Market Size Variance

\[
\text{Budgeted Market Share} \% \times (\text{Actual Industry Sales Quantity in units} - \text{Budgeted Industry Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Or

\[
(\text{Budgeted Market Share} \% \times \text{Actual Industry Sales Quantity in units} - \text{Budgeted Market Share} \% \times \text{Budgeted Industry Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Or

\[
(\text{Required Sales Quantity in units} - \text{Total Budgeted Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Market Share Variance

\[
(\text{Actual Market Share} \% - \text{Budgeted Market Share} \%) \times (\text{Actual Industry Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Or

\[
(\text{Actual Market Share} \% \times \text{Actual Industry Sales Quantity in units} - \text{Budgeted Market Share} \% \times \text{Actual Industry Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Or

\[
(\text{Total Actual Quantity in units} - \text{Required Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Market Size Variance + Market Share Variance

\[
\text{(Required Sales Quantity in units} - \text{Total Budgeted Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

\[
\text{Add}
\]

\[
(\text{Total Actual Quantity in units} - \text{Required Sales Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

\[
\text{Equals to}
\]

\[
(\text{Total Actual Quantity in units} - \text{Total Budgeted Quantity in units}) \times (\text{Average Budgeted Margin per unit})
\]

Sales Margin Quantity Variance
Sales Variances (Marginal Costing)

Sales Contribution Variance

\[(\text{Actual Contribution}) \text{ Less (Budgeted Contribution)}\]

\[\[(\text{AQ} \times \text{AC}) - (\text{BQ} \times \text{SC})\]}

Sales Contribution Price Variance

(Actual Contribution)

Less

(Standard Contribution)

\[\[(\text{AC} \times \text{AQ}) - (\text{SC} \times \text{AQ})]\]

Or

\[\text{AQ} \times (\text{AC} - \text{SC})\]

Sales Contribution Volume Variance

(Standard Contribution)

Less

(Budgeted Contribution)

\[\[(\text{SC} \times \text{AQ}) - (\text{SC} \times \text{BQ})]\]

Or

\[\text{SC} \times (\text{AQ} - \text{BQ})\]

Sales Contribution Mix Variance

(Standard Contribution)

Less

(Revised Standard Contribution)

\[\text{AQ} \times \text{SC} - (\text{RAQ} \times \text{SC})\]

Or

\[\text{SC} \times (\text{AQ} - \text{RAQ})\]

Sales Contribution Quantity Variance

(Revised Standard Contribution)

Less

(Budgeted Contribution)

\[\text{RAQ} \times \text{SC} - (\text{BQ} \times \text{SC})\]

Or

\[\text{SC} \times (\text{RAQ} - \text{BQ})\]

Alternative Formula

\[\text{Total Actual Qty. (units)} \times \{\text{Average Standard Contribution per unit of Actual Mix Less Average Budgeted Contribution per unit of Budgeted Mix}\]\n
Market Size Variance

\[\text{Budgeted Market Share %} \times (\text{Actual Industry Sales Quantity in units} - \text{Budgeted Industry Sales Quantity in units}) \times (\text{Average Budgeted Contribution per unit})\]

Market Share Variance

\[\{(\text{Actual Market Share %} - \text{Budgeted Market Share %}) \times (\text{Actual Industry Sales Quantity in units}) \times (\text{Average Budgeted Contribution per unit})\]
Market Size Variance

Budgeted Market Share % × (Actual Industry Sales Quantity in units – Budgeted Industry Sales Quantity in units) × (Average Budgeted Contribution per unit)

Or

(Budgeted Market Share % × Actual Industry Sales Quantity in units – Budgeted Market Share % × Budgeted Industry Sales Quantity in units) × (Average Budgeted Contribution per unit)

Or

(Required Sales Quantity in units – Total Budgeted Quantity in units) × (Average Budgeted Contribution per unit)

Market Share Variance

(Actual Market Share % – Budgeted Market Share %) × (Actual Industry Sales Quantity in units) × (Average Budgeted Contribution per unit)

Or

(Actual Market Share % × Actual Industry Sales Quantity in units – Budgeted Market Share % × Actual Industry Sales Quantity in units) × (Average Budgeted Contribution per unit)

Or

(Total Actual Quantity in units – Required Sales Quantity in units) × (Average Budgeted Contribution per unit)

Market Size Variance + Market Share Variance

(Required Sales Quantity in units – Total Budgeted Quantity in units) × (Average Budgeted Contribution per unit)

Add

(Total Actual Quantity in units – Required Sales Quantity in units) × (Average Budgeted Contribution per unit)

Equals to

(Total Actual Quantity in units – Total Budgeted Quantity in units) × (Average Budgeted Contribution per unit)

Sales Contribution Quantity Variance

Note:

- BQ = Budgeted Sales Quantity
- AQ = Actual Sales Quantity
- RAQ = Revised Actual Sales Quantity
 = Actual Quantity Sold Rewritten in Budgeted Proportion
- SC = Standard Contribution
 = Standard Price per Unit – Standard Cost (variable) per Unit
- AC = Actual Contribution
 = Actual Sales Price per Unit – Standard Cost (variable) per Unit
STANDARD COSTING

- **Sales Price Variance** is equal to **Sales Margin/ Contribution Price Variance**. This is because, for the actual quantity sold, standard cost remaining constant, change in selling price will have equal impact or turnover and profit/contribution.

- **Sales Margin Volume Variance** is equal to **Sales Volume Variance × Budgeted Net Profit Ratio**

- **Sales Contribution Volume Variance** is equal to **Sales Volume Variance × Budgeted PV Ratio**

A Relation: Sales Margin Volume Variance in terms of Profit & Contribution

Sales Margin Volume Variance	Standard Margin Per Unit × (Actual Quantity − Budgeted Quantity)
	[Standard Contribution Per Unit − Standard Fixed Overheads Per Unit] × (Actual Quantity − Budgeted Quantity)
	[Standard Contribution Per Unit × (Actual Quantity − Budgeted Quantity)] − [Standard Fixed Overheads Per Unit × (Actual Quantity − Budgeted Quantity)]
	Sales Contribution Volume Variance − Fixed Overhead Volume Variance
	Sales Margin Volume Variance + Fixed Overhead Volume Variance

Note: Production units equals to Sales units for both actual & budget.
Sales Variances (Turnover or Value)

<table>
<thead>
<tr>
<th>Sales Variance</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Variance</td>
<td>([(\text{AQ} \times \text{AP}) - (\text{BQ} \times \text{SP})])</td>
</tr>
<tr>
<td>Sales Price Variance</td>
<td>([(\text{AQ} \times \text{SP}) - (\text{AQ} \times \text{SP})]) Or ([\text{AQ} \times (\text{AP} - \text{SP})])</td>
</tr>
<tr>
<td>Sales Volume Variance</td>
<td>([(\text{SP} \times \text{AQ}) - (\text{SP} \times \text{BQ})]) Or ([\text{SP} \times (\text{AQ} - \text{BQ})])</td>
</tr>
<tr>
<td>Sales Mix Variance</td>
<td>([(\text{AQ} \times \text{SP}) - (\text{AQ} \times \text{RAQ})]) Or ([\text{SP} \times (\text{AQ} - \text{RAQ})])</td>
</tr>
<tr>
<td>Sales Quantity Variance</td>
<td>([(\text{SP} \times \text{RAQ}) - (\text{SP} \times \text{BQ})]) Or ([\text{SP} \times (\text{RAQ} - \text{BQ})])</td>
</tr>
</tbody>
</table>

Alternative Formula
- **Sales Price Variance**: \[\text{Average Standard Price per unit of Actual Mix} \times \{(\text{Actual Sales}) \times \text{Average Budgeted Price per unit of Budgeted Mix}\} - \{(\text{Budgeted Sales}) \times \text{Average Budgeted Price per unit of Budgeted Mix}\}\]
- **Sales Quantity Variance**: \[\text{Average Budgeted Price per unit of Budgeted Mix} \times \{(\text{Actual Sales}) \times \text{Average Budgeted Price per unit of Budgeted Mix}\} - \{(\text{Budgeted Sales}) \times \text{Average Budgeted Price per unit of Budgeted Mix}\}\]

<table>
<thead>
<tr>
<th>Market Size Variance</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Size Variance</td>
<td>([\text{Budgeted Market Share} \times (\text{Actual Industry Sales Quantity in units} - \text{Budgeted Industry Sales Quantity in units}) \times \text{Average Budgeted Price per unit}]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market Share Variance</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Share Variance</td>
<td>([\text{Actual Market Share} - \text{Budgeted Market Share}] \times (\text{Actual Industry Sales Quantity in units} \times \text{Average Budgeted Price per unit})]</td>
</tr>
</tbody>
</table>
Note:
- BQ = Budgeted Sales Quantity
- AQ = Actual Sales Quantity
- RAQ = Revised Actual Sales Quantity
- RAQ = Actual Quantity Sold Rewritten in Budgeted Proportion
- SP = Standard Selling Price per Unit
- AP = Actual Selling Price per Unit

Market Size Variance

\[
\text{Market Size Variance} = \text{Budgeted Market Share} \% \times (\text{Actual Industry Sales Quantity} - \text{Budgeted Industry Sales Quantity}) \times (\text{Average Budgeted Price per unit})
\]

Or

\[
= \text{Budgeted Market Share} \% \times \text{Actual Industry Sales Quantity} - \text{Budgeted Market Share} \% \times \text{Budgeted Industry Sales Quantity} \times (\text{Average Budgeted Price per unit})
\]

Or

\[
= \text{Required Sales Quantity} - \text{Total Budgeted Quantity} \times (\text{Average Budgeted Price per unit})
\]

Market Share Variance

\[
\text{Market Share Variance} = (\text{Actual Market Share} \% - \text{Budgeted Market Share} \%) \times (\text{Actual Industry Sales Quantity}) \times (\text{Average Budgeted Price per unit})
\]

Or

\[
= (\text{Actual Market Share} \% \times \text{Actual Industry Sales Quantity} - \text{Budgeted Market Share} \% \times \text{Actual Industry Sales Quantity}) \times (\text{Average Budgeted Price per unit})
\]

Or

\[
= \text{Total Actual Quantity} - \text{Required Sales Quantity} \times (\text{Average Budgeted Price per unit})
\]

Market Size Variance + Market Share Variance

\[
\text{Market Size Variance + Market Share Variance} = \text{Required Sales Quantity} - \text{Total Budgeted Quantity} \times (\text{Average Budgeted Price per unit})
\]

Add

\[
\text{Total Actual Quantity} - \text{Required Sales Quantity} \times (\text{Average Budgeted Price per unit})
\]

Equals to

\[
\text{Sales Quantity Variance} = \text{Required Sales Quantity} - \text{Total Budgeted Quantity} \times (\text{Average Budgeted Price per unit})
\]
Direct Material Variances

Direct Material Total Variance

\[\text{[Standard Cost} - \text{Actual Cost]} \]
(The difference between the Standard Direct Material Cost of the actual production volume and the Actual Cost of Direct Material)

\[([SQ \times SP] - (AQ \times AP)] \]

Direct Material Price Variance

\[\text{[Standard Cost of Actual Quantity} - \text{Actual Cost]} \]
(The difference between the Standard Price and Actual Price for the Actual Quantity)

\[[(SP - AP) \times AQ] \]
Or
\[[(SP \times AQ) - (AP \times AQ)] \]

Direct Material Usage Variance

\[\text{[Standard Cost of Standard Quantity for Actual Production} - \text{Standard Cost of Actual Quantity]} \]
(The difference between the Standard Quantity specified for actual production and the Actual Quantity used, at Standard Purchase Price)

\[[(SQ - AQ) \times SP] \]
Or
\[[(SQ \times SP) - (AQ \times SP)] \]

Direct Material Mix Variance

\[\text{[Standard Cost of Actual Quantity in Standard Proportion} - \text{Standard Cost of Actual Quantity]} \]
(The difference between the Actual Quantity in standard proportion and Actual Quantity in actual proportion, at Standard Purchase Price)

\[[(RAQ - AQ) \times SP] \]
Or
\[[(RAQ \times SP) - (AQ \times SP)] \]

Direct Material Yield Variance

\[\text{[Standard Cost of Standard Quantity for Actual Production} - \text{Standard Cost of Actual Quantity in Standard Proportion]} \]
(The difference between the Standard Quantity specified for actual production and Actual Quantity in standard proportion, at Standard Purchase Price)

\[[(SQ - RAQ) \times SP] \]
Or
\[[(SQ \times SP) - (RAQ \times SP)] \]

Alternative Formula

\[\text{[Total Actual Quantity (units)} \times \{\text{Average Standard Price per unit of Standard Mix Less Average Standard Price per unit of Actual Mix}\}] \]

Alternative Formula

\[\text{[Average Standard Price per unit of Standard Mix} \times \{\text{Total Standard Quantity (units)} \text{Less Total Actual Quantity (units)}\}] \]
STANDARD COSTING 12.41

Note:

SQ = Standard Quantity = Expected Consumption for Actual Output
AQ = Actual Quantity of Material Consumed
RAQ = Revised Actual Quantity = Actual Quantity Rewritten in Standard Proportion
SP = Standard Price per Unit
AP = Actual Price per Unit
(*) = Standard Cost refers to ‘Standard Cost of Standard Quantity for Actual Output’
(#) = Direct Material Total Variance (also known as material cost variance)

Material Purchase Price Variance

\[\text{Material Purchase Price Variance} = (\text{Standard Cost of Actual Quantity} - \text{Actual Cost}) \]

(The difference between the Standard Price and Actual Price for the actual quantity of material purchased)

\[= (SP - AP) \times PQ \]

Or

\[= (SP \times PQ) - (AP \times PQ) \]

Note:

PQ = Purchase Quantity
SP = Standard Price
AP = Actual Price
Direct Labour Variances

Direct Labour Total Variance

\[
\text{Total Variance} = (\text{Standard Cost} - \text{Actual Cost})
\]

(The difference between the Standard Direct Labour Cost and the Actual Direct Labour Cost incurred for the production achieved)

\[
[(SH \times SR) - (AH^* \times AR)]
\]

Direct Labour Rate Variance

\[
\text{Rate Variance} = (\text{Standard Cost of Actual Time} - \text{Actual Cost})
\]

(The difference between the Standard Rate per hour and Actual Rate per hour for the Actual Hours paid)

\[
[(SR - AR) \times AH^*]
\]

Or

\[
[(SR \times AH^*) - (AR \times AH^*)]
\]

Direct Labour Idle Time Variance

\[
\text{Idle Time Variance} = (\text{Standard Rate per Hour} \times \text{Actual Idle Hours})
\]

(The difference between the Actual Hours paid and Actual Hours worked at Standard Rate)

\[
[(AH^* - AH^#) \times SR]
\]

Or

\[
[(AH^* \times SR) - (AH^# \times SR)]
\]

Direct Labour Efficiency Variance

\[
\text{Efficiency Variance} = (\text{Standard Cost of Standard Time for Actual Production} - \text{Standard Cost of Actual Time})
\]

(The difference between the Standard Hours specified for actual production and Actual Hours worked at Standard Rate)

\[
[(SH - AH^#) \times SR]
\]

Or

\[
[(SH \times SR) - (AH^# \times SR)]
\]

Direct Labour Mix Variance

Or Gang Variance

\[
\text{Mix Variance} = (\text{Standard Cost of Actual Time Worked in Standard Proportion} - \text{Standard Cost of Actual Time Worked})
\]

(The difference between the Actual Hours worked in standard proportion and Actual Hours worked in actual proportion, at Standard Rate)

\[
[(RAH - AH^#) \times SR]
\]

Or

\[
[(RAH \times SR) - (AH^# \times SR)]
\]

Alternate Formula

\[
\text{Alternate Formula} = \frac{\text{Total Actual Time Worked (hours)} \times \{(\text{Average Standard Rate per hour of Standard Gang} \text{ Less Average Standard Rate per hour of Actual Gang})\}}{\text{on the basis of hours worked}}
\]

Direct Labour Yield Variance

Or Sub-Efficiency Variance

\[
\text{Yield Variance} = (\text{Standard Cost of Standard Time for Actual Production} - \text{Standard Cost of Actual Time Worked in Standard Proportion})
\]

(The difference between the Standard Hours specified for actual production and Actual Hours worked in standard proportion, at Standard Rate)

\[
[(SH - RAH) \times SR]
\]

Or

\[
[(SH \times SR) - (RAH \times SR)]
\]

Alternate Formula

\[
\text{Alternate Formula} = \frac{\text{Average Standard Rate per hour of Standard Gang} \times \{(\text{Total Standard Time (hours)} \text{ Less Total Actual Time Worked (hours)})\}}{\text{on the basis of hours worked}}
\]
STANDARD COSTING

Note:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>Standard Hours = Expected time (Time allowed) for Actual Output</td>
</tr>
<tr>
<td>AH*</td>
<td>Actual Hours paid for</td>
</tr>
<tr>
<td>AH#</td>
<td>Actual Hours worked</td>
</tr>
<tr>
<td>RAH</td>
<td>Revised Actual Hours = Actual Hours (worked) rewritten in Standard Proportion</td>
</tr>
<tr>
<td>SR</td>
<td>Standard Rate per Labour Hour</td>
</tr>
<tr>
<td>AR</td>
<td>Actual Rate per Labour Hour Paid</td>
</tr>
<tr>
<td>(2)</td>
<td>Standard Cost refers to ‘Standard Cost of Standard Time for Actual Output’</td>
</tr>
<tr>
<td>(1')</td>
<td>Direct Labour Total Variance (also known as labour cost variance)</td>
</tr>
</tbody>
</table>

In the absence of idle time

\[
\text{Actual Hours Worked} = \text{Actual Hours Paid}
\]

Idle Time is a period for which a workstation is available for production but is not used due to e.g. shortage of tooling, material or operators. During Idle Time, Direct Labour Wages are being paid but no output is being produced. The cost of this can be identified separately in an Idle Time Variance, so that it is not ‘hidden’ in an adverse Labour Efficiency Variance. Some organizations face Idle Time on regular basis. In this situation the Standard Labour Rate may include an allowance for the cost of the expected idle time. Only the impact of any unexpected or abnormal Idle Time would be included in the Idle Time Variance.
Fixed Production Overhead Variances

Fixed Overhead Total Variance
(Absorbed Fixed Overheads) Less (Actual Fixed Overheads)

Fixed Overhead Expenditure Variance
(Budgeted Fixed Overheads) Less (Actual Fixed Overheads)

Fixed Overhead Volume Variance
(Absorbed Fixed Overheads) Less (Budgeted Fixed Overheads)

Fixed Overhead Capacity Variance
(Budgeted Fixed Overheads for Actual Hours) Less (Budgeted Fixed Overheads)

Fixed Overhead Efficiency Variance
(Absorbed Fixed Overheads) Less (Budgeted Fixed Overheads for Actual Hours)

Or

Fixed Overhead Capacity Variance
(Budgeted Fixed Overheads for Actual Hours) Less (Possible Fixed Overheads)

Fixed Overhead Calendar Variance
(Possible Fixed Overheads) Less (Budgeted Fixed Overheads)

Fixed Overhead Efficiency Variance
(Absorbed Fixed Overhead) Less (Budgeted Fixed Overheads for Actual Hours)

Actual Hours (Worked)
Note:

Standard Fixed Overheads for Production (Absorbed)
- \[= \text{Standard Fixed Overhead Rate per Unit} \times \text{Actual Production in Units} \]
- \[= \text{Standard Fixed Overhead Rate per Hour} \times \text{Standard Hours for Actual Production} \]

Budgeted Fixed Overheads
- \[= \text{It represents the amount of fixed overhead which should be spent according to the budget or standard during the period} \]
- \[= \text{Standard Fixed Overhead Rate per Unit} \times \text{Budgeted Production in Units} \]
- \[= \text{Standard Fixed Overhead Rate per Hour} \times \text{Budgeted Hours} \]

Actual Fixed Overheads Incurred

Budgeted Fixed Overheads for Actual Hours
- \[= \text{Standard Fixed Overhead Rate per Hour} \times \text{Actual Hours} \]

Possible Fixed Overheads
- \[= \text{Expected Fixed Overhead for Actual Days Worked} \]
- \[= \frac{\text{Budgeted Fixed Overhead}}{\text{Budgeted Days}} \times \text{Actual Days} \]

\[= \text{Fixed Overhead Total Variance also known as ‘Fixed Overhead Cost Variance’} \]

Fixed Overhead Efficiency Variance

(Absorbed Fixed Overheads) – (Budgeted Fixed Overheads for Actual Hours)

Or

(Standard Fixed Overhead Rate per Hour \times \text{Standard Hours for Actual Output}) – (Standard Fixed Overhead Rate per Hour \times \text{Actual Hours})

Or

Standard Fixed Overhead Rate per Hour \times (\text{Standard Hours for Actual Output} – \text{Actual Hours})

Fixed Overhead Capacity Variance

(Budgeted Fixed Overheads for Actual Hours) – (Budgeted Fixed Overheads)

Or

(Standard Fixed Overhead Rate per Hour \times \text{Actual Hours}) – (Standard Fixed Overhead Rate per Hour \times \text{Budgeted Hours})

Or

Standard Fixed Overhead Rate per Hour \times (\text{Actual Hours} – \text{Budgeted Hours})
Fixed Overhead Volume Variance-I

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Absorbed Fixed Overheads) – (Budgeted Fixed Overheads)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>(Standard Fixed Overhead Rate per Unit × Actual Output) – (Standard Fixed Overhead Rate per Unit × Budgeted Output)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>Standard Fixed Overhead Rate per Unit × (Actual Output – Budgeted Output)</td>
</tr>
</tbody>
</table>

Fixed Overhead Volume Variance-II

<table>
<thead>
<tr>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Absorbed Fixed Overheads) – (Budgeted Fixed Overheads)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>(Standard Fixed Overhead Rate per Hour × Standard Hours for Actual Output) – (Standard Fixed Overhead Rate per Hour × Budgeted Hours)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>Standard Fixed Overhead Rate per Hour × (Standard Hours for Actual Output – Budgeted Hours)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>Standard Fixed Overhead Rate per Hour × (Standard Hours per Unit × Actual Output – Standard Hours per Unit × Budgeted Output)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>(Standard Fixed Overhead Rate per Hour × Standard Hours per Unit) × (Actual Output – Budgeted Output)</td>
</tr>
<tr>
<td>Or</td>
</tr>
<tr>
<td>Standard Fixed Overhead Rate per Unit × (Actual Output – Budgeted Output)</td>
</tr>
</tbody>
</table>

Overhead Variances can also be affected by idle time. It is usually assumed that Overheads are incurred when labour is working, not when it is idle. Accordingly, hours worked has been considered for the calculation of Variable and Fixed Overheads Variances.
Variable Production Overhead Variances

Variable Overhead Total Variance

- **(Standard Variable Overheads for Production – Actual Variable Overheads)**

Variable Overhead Expenditure (Spending) Variance

- **(Budgeted Variable Overheads for Actual Hours*)**
- **Less**
- **(Actual Variable Overheads)**

Variable Overhead Efficiency Variance

- **(Standard Variable Overheads for Production)**
- **Less**
- **(Budgeted Variable Overheads for Actual Hours*)**

* Actual Hours (Worked)

Note:

- **Standard Variable Overheads for Production/Charged to Production**
 - Standard/Budgeted Variable Overhead Rate per Unit × Actual Production (Units)
 - Standard Variable Overhead Rate per Hour × Standard Hours for Actual Production

- **Actual Overheads Incurred**
 - **Budgeted Variable Overheads for Actual Hours**
 - Standard Variable Overhead Rate per Hour × Actual Hours
 - Variable Overhead Total Variance also known as ‘Variable Overhead Cost Variance’

Variable Overhead Efficiency Variance

- (Standard Variable Overheads for Production) – (Budgeted Overheads for Actual Hours)
- Or
- (Standard Variable Overhead Rate per Hour × Standard Hours for Actual Output) – (Standard Variable Overhead Rate per Hour × Actual Hours)
- Or
- Standard Variable Overhead Rate per Hour × (Standard Hours for Actual Output – Actual hours)

Variable Overhead Expenditure Variance

- (Budgeted Variable Overheads for Actual Hours) – (Actual Variable Overheads)
- Or
- (Standard Rate per Hour × Actual Hours) – (Actual Rate per Hour × Actual Hours)
- Or
- Actual Hours × (Standard Rate per Hour – Actual Rate per Hour)
SUMMARY

- **Planning & Operational Variances** - A Planning Variance simply compares a revised standard to the original standard. An Operational Variance simply compares the actual results against the revised amount. Operating variances would be calculated after the planning variances have been established and are thus a realistic way of assessing performance. Controllable Variances are those variances which arise due to inefficiency of a cost centre/department. Uncontrollable Variances are those variances which arise due to factors beyond the control of the management or concerned department of the organization.

- **Variance Analysis in Activity Based Costing** - Variance analysis can be applied to activity costs (such as setup costs) to gain insight into why actual activity costs differ from activity costs in the static budget or in the flexible budget. Interpreting cost variances for different activities requires understanding whether the costs are output unit-level, batch level, product sustaining, or facility sustaining costs.

- **Variance Analysis in Advanced Manufacturing Environment/ High Technology Firms** - In the high-technology environment, large part of manufacturing process is computerized. Many costs that once were largely variable have become fixed, most becoming committed fixed cost. Some high technology manufacturing organizations have found that the two largest variable costs involve materials and power to operate machines. In these companies, the emphasis of variance analysis is placed on direct materials and variable manufacturing overhead. For these firms labour variances may no longer be meaningful because direct labour is a committed cost, not a cost expected to vary with output.

- **Impact of Learning Curve** - Learning curve is a geometrical progression, which reveals that there is steadily decreasing cost for the accomplishment of a given repetitive operation, as the identical operation is increasingly repeated. The amount of decrease will be less and less with each successive unit produced. Automated manufacturing is unlikely to have much variation or to display a regular learning curve. In less-automated processes, however, where learning curves do occur, it is important to take the resulting decline in labour hours and costs into account in setting standards, determining prices, planning production, or setting up work schedules.

- **Investigation of Variances** - An investigation should only be undertaken if the benefits expected from the investigation exceed the costs of searching for and correcting the source of the variance. Interpretation may suggest possible cause of variances but investigation must arrive at definite conclusions about the cause of the variance so that action to correct the variance can be effective.

- **Relevant Cost Approach** to Variance Analysis is used if inputs are limited. Failure to use limited inputs properly leads not only to increased acquisition cost but also to a lost contribution.
Therefore, it is necessary to consider the lost contribution in variance analysis. When this approach is used, price or expenditure variances are not affected.

- **Standard Costing in Service Sector** - Use of activity based costing can provide a constructive basis for variance analysis of overheads in service sector organizations.

- **McDonaldization** – Breaking tasks into smallest possible units and rationalising them to find the single most efficient method for completing each task. All other tasks are discarded. Standards can be more accurately set and assessed. Helpful in services like hairdressing, dentistry, or opticians’ services.

- **Behavioural Issues of Standard Costing** – Focus on short term, sub-optimal behaviour of the employees like incorporation of budget slacks. These issues can be overcome by involving employees in budget preparation and taking a long-term view of organisation strategy incorporating various qualitative and quantitative measures.

- **Possible Interdependence between Variances** – Using cheaper materials will result in a favourable material price variance, but using the cheaper material in production might increase the wastage rate (adverse material usage) and cause a fall in labour productivity (adverse labour and variable overhead efficiency). A more expensive mix of materials (adverse mix variance) might result in higher output yields (favourable yield variance).

 Using more experienced labour to do the work will result in an adverse labour rate variance, but productivity might be higher as a result (favourable labour and variable overhead efficiency).

- Standard costing may be inappropriate in the modern production environment because: products may not be standardised, get outdated quickly, automation of production, emphasis on continuous improvement, delay in problem solving.